Combinatorial Analysis (MIT Fall 2021) Instructor: Felix Gotti

Midterm 4 Solutions (by Daniil Kliuev)

Problem 1 Let G be a simple graph, and let e be an edge of G. Let G /e be the graph
we obtain from G by contracting the edge e, and then replacing all the created multiple
edges by single edges. Let G\ e denote the graph we obtain from G by deleting the
edge e. Prove that

pa(r) = pare(®) — payse(T),

where pg (), pae(), and pgje(x) are the chromatic polynomials of the simple graphs G,
G\ e, and G /e, respectively.

Solution. As two polynomials having an infinite number of common values must be
equal, it is enough to prove the statement of the problem for every z € N. Let e = uw.
Fix k. Denote by N; the number of ways to color G \ e with k colors so that u and v
have different colors. Denote by Ny the number of ways to color G\ e with & colors so
that u and v have the same color. We have pa\.(k) = Ny + Ns.

To color G is to color G \ e with additional condition that w and v have different
colors. Hence pg(k) = N;. Suppose that G\ e is colored with k colors so that u and
v have the same color. Then we define the coloring of G/e as follows: we color all old
vertices as in G\ e and we color new vertices with the same color as w and v. This
gives a proper coloring of G/e.

Suppose that G/e is colored with k colors. Then we define the coloring of G \ e as
follows. If w # u,v we color w as in G/e. We color u and v as new vertex. This gives
a proper coloring of G \ e such that u and v have the same color. It follows that there
are Ny ways to color G/e with k colors, and so pg/e(k) = Na.

We conclude that pg (k) = peve(k) — paye(k)- O

Problem 2 Find the chromatic number and the chromatic polynomial of Wis:

Solution. The graph Wj contains a triangle, hence its chromatic number is at least 3.
Three colors is enough: color the outer cycle using two colors, use the third for central
vertex.

We turn to chromatic polynomial of W5. Let k be a positive integer. We will find
the number of ways to color Wj using k colors. Let v be the central vertex of Ws5. The
rest of vertices form a cycle on 4 vertices Cy. First, we choose a color for v; there are
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k ways to do this. Since v is connected to all vertices of Cy this leaves k — 1 colors for
Cy. We know the chromatic polynomial of C,,: it equals to (z — 1)" 4+ (=1)"(z — 1).
For n = 4 this gives (z —1)* + (z — 1). Since we use k — 1 color we replace z with k — 1
and get (k —2)* + (k — 2). Tt follows that Py, (k) = k((k — 2)* + (k — 2)). O

Problem 3 Is the graph below planar? Justify your answer.

Solution. Label the vertices as follows:

We replace vertex 2 and both edges incident to 2 by a new edge connecting B and
E. We do the same with vertex 3 and get a new edge connecting A and D. We do
the same with vertex 4 and get an edge connecting C' and F. We note that these
operations preserve edge-equivalence. We obtained a graph that has all edges between
blue vertices B, F, D and red vertices A, C, E, in other words K33. Hence our graph
contains a subgraph that is edge-equivalent to K33. Hence it is not planar. [NOTE:
It is not difficult to see that the given graph is actually (isomorphic to) the Petersen
graph.] O

Problem 4 Prove that in every polytope we can always choose two distinct faces having
the same number of vertices.
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Solution. Suppose that we have a polytope with e edges and f vertices. Denote faces
by Fi,...,Fy. Let E(F;) be the number of edges of face Fj, V(F;) be the number
of vertices of face F;. We have E(F;) = V(F;). Suppose that V(Fy),...,V(Fy) are
distinct. Then we can assume that V(Fy) < V(F,) < --- < V(Fy). Each face contains
at least three vertices, hence V(F}) > 3. It follows that V(F;) > i+ 2 for all i.
Proposition 34.6 in lecture notes says that E(Fy) + ...+ E(Fy) = 2e. We have

E(F)+- -+ E(Ff) =V(F)+---+V(Ff) >

(f+2)(f+3)
2

3+4+--+(f+2)=(1+2+--+(f+2)-1-2= - 3.

In polytopes we have e < 3f — 6, this is proposition 34.8 in lecture notes. Hence
(”2)2& —3 < 2 < 6f—12. We deduce that (f +2)(f +3) —6 < 12f — 24.
Rearranging we get f2 — 7f 4+ 24 < 0. The discriminant of polynomial % — 7z + 24
equals to 72 — 4 - 24 < 0, hence it cannot be nonpositive. We get a contradiction.

H

Problem 5 Let G be a simple connected graph with |V (G)| > 11. Prove that either G
or the complement of G must be non-planar.

Solution. Let |V(G)| = n. Denote the Complement of G by G. There are "2 _ | B(G)|
in G. Hence either E(G) or E(G) is at least n(eD) - Changing G to G if necessary we

can assume that there are at least “=1 edges in GG. Suppose that G is planar. Then

E(G) < 3n — 6. Hence "( U < 3p— 6. We deduce that n(n — 1) < 12n — 24. From
n > 11 we get 12 <n + 1, hence

2n—-24=12n-2)<(n+1)(n—2)=n*—-n—-2<n*—n=n(n—-1).

We get a contradiction with n(n — 1) < 12n — 24.



