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Midterm 4 Solutions (by Daniil Kliuev)

Problem 1 Let G be a simple graph, and let e be an edge of G. Let G/e be the graph
we obtain from G by contracting the edge e, and then replacing all the created multiple
edges by single edges. Let G \ e denote the graph we obtain from G by deleting the
edge e. Prove that

pG(x) = pG\e(x)− pG/e(x),

where pG(x), pG\e(x), and pG/e(x) are the chromatic polynomials of the simple graphs G,
G \ e, and G/e, respectively.

Solution. As two polynomials having an infinite number of common values must be
equal, it is enough to prove the statement of the problem for every x ∈ N. Let e = uv.
Fix k. Denote by N1 the number of ways to color G \ e with k colors so that u and v
have different colors. Denote by N2 the number of ways to color G \ e with k colors so
that u and v have the same color. We have pG\e(k) = N1 + N2.

To color G is to color G \ e with additional condition that u and v have different
colors. Hence pG(k) = N1. Suppose that G \ e is colored with k colors so that u and
v have the same color. Then we define the coloring of G/e as follows: we color all old
vertices as in G \ e and we color new vertices with the same color as u and v. This
gives a proper coloring of G/e.

Suppose that G/e is colored with k colors. Then we define the coloring of G \ e as
follows. If w 6= u, v we color w as in G/e. We color u and v as new vertex. This gives
a proper coloring of G \ e such that u and v have the same color. It follows that there
are N2 ways to color G/e with k colors, and so pG/e(k) = N2.

We conclude that pG(k) = pG\e(k)− pG/e(k). �

Problem 2 Find the chromatic number and the chromatic polynomial of W5:

Solution. The graph W5 contains a triangle, hence its chromatic number is at least 3.
Three colors is enough: color the outer cycle using two colors, use the third for central
vertex.

We turn to chromatic polynomial of W5. Let k be a positive integer. We will find
the number of ways to color W5 using k colors. Let v be the central vertex of W5. The
rest of vertices form a cycle on 4 vertices C4. First, we choose a color for v; there are
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k ways to do this. Since v is connected to all vertices of C4 this leaves k − 1 colors for
C4. We know the chromatic polynomial of Cn: it equals to (x − 1)n + (−1)n(x − 1).
For n = 4 this gives (x− 1)4 + (x− 1). Since we use k− 1 color we replace x with k− 1
and get (k − 2)4 + (k − 2). It follows that PW5(k) = k((k − 2)4 + (k − 2)). �

Problem 3 Is the graph below planar? Justify your answer.

Solution. Label the vertices as follows:

Delete the central vertex 1. We claim that this subgraph is edge-equivalent to K3,3:

We replace vertex 2 and both edges incident to 2 by a new edge connecting B and
E. We do the same with vertex 3 and get a new edge connecting A and D. We do
the same with vertex 4 and get an edge connecting C and F . We note that these
operations preserve edge-equivalence. We obtained a graph that has all edges between
blue vertices B,F,D and red vertices A,C,E, in other words K3,3. Hence our graph
contains a subgraph that is edge-equivalent to K3,3. Hence it is not planar. [NOTE:
It is not difficult to see that the given graph is actually (isomorphic to) the Petersen
graph.] �

Problem 4 Prove that in every polytope we can always choose two distinct faces having
the same number of vertices.
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Solution. Suppose that we have a polytope with e edges and f vertices. Denote faces
by F1, . . . , Ff . Let E(Fi) be the number of edges of face Fi, V (Fi) be the number
of vertices of face Fi. We have E(Fi) = V (Fi). Suppose that V (F1), . . . , V (Ff ) are
distinct. Then we can assume that V (F1) < V (F2) < · · · < V (Ff ). Each face contains
at least three vertices, hence V (F1) ≥ 3. It follows that V (Fi) ≥ i + 2 for all i.

Proposition 34.6 in lecture notes says that E(F1) + . . . + E(Ff ) = 2e. We have

E(F1) + · · ·+ E(Ff ) = V (F1) + · · ·+ V (Ff ) ≥

3 + 4 + · · ·+ (f + 2) = (1 + 2 + · · ·+ (f + 2))− 1− 2 =
(f + 2)(f + 3)

2
− 3.

In polytopes we have e ≤ 3f − 6, this is proposition 34.8 in lecture notes. Hence
(f+2)(f+3)

2
− 3 ≤ 2e ≤ 6f − 12. We deduce that (f + 2)(f + 3) − 6 ≤ 12f − 24.

Rearranging we get f 2 − 7f + 24 ≤ 0. The discriminant of polynomial x2 − 7x + 24
equals to 72 − 4 · 24 < 0, hence it cannot be nonpositive. We get a contradiction.

�

Problem 5 Let G be a simple connected graph with |V (G)| ≥ 11. Prove that either G
or the complement of G must be non-planar.

Solution. Let |V (G)| = n. Denote the complement of G by G. There are n(n−1)
2
−|E(G)|

in G. Hence either E(G) or E(G) is at least n(n−1)
4

. Changing G to G if necessary we

can assume that there are at least n(n−1)
4

edges in G. Suppose that G is planar. Then

E(G) ≤ 3n − 6. Hence n(n−1)
4
≤ 3n − 6. We deduce that n(n − 1) ≤ 12n − 24. From

n ≥ 11 we get 12 ≤ n + 1, hence

12n− 24 = 12(n− 2) ≤ (n + 1)(n− 2) = n2 − n− 2 < n2 − n = n(n− 1).

We get a contradiction with n(n− 1) ≤ 12n− 24.
�


